Source code for tardis.io.parsers.arepo

import os
import sys
import argparse
import warnings

import numpy as np
import matplotlib.pyplot as plt
import pandas as pd
from scipy import stats


[docs]class ArepoSnapshot: def __init__( self, filename, species, speciesfile, alpha=0.0, beta=0.0, gamma=0.0, boxsize=1e12, resolution=512, numthreads=4, ): """ Loads relevant data for conversion from Arepo snapshot to a csvy-model. Requires arepo-snap-util to be installed. The snapshot is mapped onto a Cartesian grid before further processing is done. Parameters ---------- filename : str Path to file to be converted. species : list of str Names of the species to be exported. Have to be the same as in the species-file of the Arepo simulation speciesfile : str File specifying the species used in the Arepo simulation. alpha : float Euler angle alpha for rotation of the desired line- of-sight to the x-axis. Only usable with snapshots. Default: 0.0 beta : float Euler angle beta for rotation of the desired line- of-sight to the x-axis. Only usable with snapshots. Default: 0.0 gamma : float Euler angle gamma for rotation of the desired line- of-sight to the x-axis. Only usable with snapshots. Default: 0.0 boxsize : float Size of the box (in cm) from which data is mapped to a Cartesian grid. Only usable with snapshots. Default: 1e12 resolution : int Resolution of the Cartesian grid. Only usable with snapshots. Default: 512 numthreads : int Number of threads with which Cartesian mapping is done. Default: 4 """ try: import gadget_snap import calcGrid except ModuleNotFoundError: raise ImportError( "Please make sure you have arepo-snap-util installed if you want to directly import Arepo snapshots." ) self.species = species species_full = np.genfromtxt(speciesfile, skip_header=1, dtype=str).T[0] self.spec_ind = [] for spec in self.species: self.spec_ind.append(np.where(species_full == spec)[0][0]) self.spec_ind = np.array(self.spec_ind) self.s = gadget_snap.gadget_snapshot( filename, hdf5=True, quiet=True, lazy_load=True, ) rz_yaw = np.array( [ [np.cos(alpha), -np.sin(alpha), 0], [np.sin(alpha), np.cos(alpha), 0], [0, 0, 1], ] ) ry_pitch = np.array( [ [np.cos(beta), 0, np.sin(beta)], [0, 1, 0], [-np.sin(beta), 0, np.cos(beta)], ] ) rx_roll = np.array( [ [1, 0, 0], [0, np.cos(gamma), -np.sin(gamma)], [0, np.sin(gamma), np.cos(gamma)], ] ) # R = RzRyRx rotmat = np.dot(rz_yaw, np.dot(ry_pitch, rx_roll)) self.s.rotateto(rotmat[0], dir2=rotmat[1], dir3=rotmat[2]) self.time = self.s.time self.pos = np.array( self.s.mapOnCartGrid( "pos", box=[boxsize, boxsize, boxsize], center=self.s.centerofmass(), res=resolution, numthreads=numthreads, ) ) for i in range(3): self.pos[i] -= self.s.centerofmass()[i] self.rho = np.array( self.s.mapOnCartGrid( "rho", box=[boxsize, boxsize, boxsize], center=self.s.centerofmass(), res=resolution, numthreads=numthreads, ) ) self.vel = np.array( self.s.mapOnCartGrid( "vel", box=[boxsize, boxsize, boxsize], center=self.s.centerofmass(), res=resolution, numthreads=numthreads, ) ) self.nuc_dict = {} for i, spec in enumerate(self.species): self.nuc_dict[spec] = np.array( self.nucMapOnCartGrid( self.s, spec, self.spec_ind[i], box=[boxsize, boxsize, boxsize], res=resolution, center=self.s.centerofmass(), numthreads=numthreads, ) )
[docs] def nucMapOnCartGrid( self, snapshot, species, ind, box, res=512, numthreads=1, value="xnuc", center=False, saveas=False, use_only_cells=None, ): """ Helper funciton to extract nuclear composition from snapshots """ try: import pylab import calcGrid except ModuleNotFoundError: raise ImportError( "Please make sure you have arepo-snap-util installed if you want to directly import Arepo snapshots." ) if type(center) == list: center = pylab.array(center) elif type(center) != np.ndarray: center = snapshot.center if type(box) == list: box = pylab.array(box) elif type(box) != np.ndarray: box = np.array( [snapshot.boxsize, snapshot.boxsize, snapshot.boxsize] ) if type(res) == list: res = pylab.array(res) elif type(res) != np.ndarray: res = np.array([res] * 3) if use_only_cells is None: use_only_cells = np.arange(snapshot.nparticlesall[0], dtype="int32") pos = snapshot.pos[use_only_cells, :].astype("float64") px = np.abs(pos[:, 0] - center[0]) py = np.abs(pos[:, 1] - center[1]) pz = np.abs(pos[:, 2] - center[2]) (pp,) = np.where( (px < 0.5 * box[0]) & (py < 0.5 * box[1]) & (pz < 0.5 * box[2]) ) print("Selected %d of %d particles." % (pp.size, snapshot.npart)) posdata = pos[pp] valdata = snapshot.data[value][use_only_cells, ind][pp].astype( "float64" ) if valdata.ndim == 1: data = calcGrid.calcASlice( posdata, valdata, nx=res[0], ny=res[1], nz=res[2], boxx=box[0], boxy=box[1], boxz=box[2], centerx=center[0], centery=center[1], centerz=center[2], grid3D=True, numthreads=numthreads, ) grid = data["grid"] else: # We are going to generate ndim 3D grids and stack them together # in a grid of shape (valdata.shape[1],res,res,res) grid = [] for dim in range(valdata.shape[1]): data = calcGrid.calcASlice( posdata, valdata[:, dim], nx=res[0], ny=res[1], nz=res[2], boxx=box[0], boxy=box[1], boxz=box[2], centerx=center[0], centery=center[1], centerz=center[2], grid3D=True, numthreads=numthreads, ) grid.append(data["grid"]) grid = np.stack([subgrid for subgrid in grid]) if saveas: grid.tofile(saveas) return grid
[docs] def get_grids(self): """ Returns all relevant data to create Profile objects """ return self.pos, self.vel, self.rho, self.nuc_dict, self.time
[docs]class Profile: """ Parent class of all Profiles. Contains general function, e.g. for plotting and export. """ def __init__(self, pos, vel, rho, xnuc, time): """ Parameters ---------- pos : list of float Meshgrid of positions in center of mass frames in Cartesian coordinates vel : list of float Meshgrid of velocities/ velocity vectors rho : list of float Meshgrid of density xnuc : dict Dictonary containing all the nuclear fraction meshgrids of the relevant species. time : float Time of the data """ self.pos = pos self.vel = vel self.rho = rho self.xnuc = xnuc self.time = time self.species = list(self.xnuc.keys()) # Empty values to be filled with the create_profile function self.pos_prof_p = None self.pos_prof_n = None self.vel_prof_p = None self.vel_prof_n = None self.rho_prof_p = None self.rho_prof_n = None self.xnuc_prof_p = {} self.xnuc_prof_n = {}
[docs] def plot_profile(self, save=None, dpi=600, **kwargs): """ Plots profile, both in the positive and negative direction. Parameters ---------- save : str Path under which the figure is to be saved. Default: None dpi : int Dpi of the saved figure **kwargs : keywords passable to matplotlib.pyplot.plot() Returns ------- fig : matplotlib figure object """ fig, (ax1, ax2) = plt.subplots(2, 1, figsize=[9.8, 9.6]) # Positive direction plots ax1.plot( self.pos_prof_p, self.rho_prof_p / max(self.rho_prof_p), label="Density", **kwargs, ) ax1.plot( self.pos_prof_p, self.vel_prof_p / max(self.vel_prof_p), label="Velocity", **kwargs, ) for spec in self.species: ax1.plot( self.pos_prof_p, self.xnuc_prof_p[spec], label=spec.capitalize(), **kwargs, ) ax1.grid() ax1.set_ylabel("Profile (arb. unit)") ax1.set_title("Profiles along the positive axis") # Positive direction plots ax2.plot( self.pos_prof_n, self.rho_prof_n / max(self.rho_prof_n), label="Density", **kwargs, ) ax2.plot( self.pos_prof_n, self.vel_prof_n / max(self.vel_prof_n), label="Velocity", **kwargs, ) for spec in self.species: ax2.plot( self.pos_prof_n, self.xnuc_prof_n[spec], label=spec.capitalize(), **kwargs, ) ax2.grid() ax2.set_ylabel("Profile (arb. unit)") ax2.set_xlabel("Radial position (cm)") # TODO astropy unit support ax2.set_title("Profiles along the positive axis") # Some styling fig.tight_layout() handles, labels = ax1.get_legend_handles_labels() lgd = ax1.legend( handles, labels, loc="upper left", bbox_to_anchor=(1.05, 1.05), title="Time = {:.2f} s".format(self.time), ) if save is not None: plt.savefig( save, bbox_inches="tight", dpi=dpi, ) return fig
[docs] def rebin(self, nshells, statistic="mean"): """ Rebins the data to nshells. Uses the scipy.stats.binned_statistic to bin the data. The standard deviation of each bin can be obtained by passing the statistics="std" keyword. Parameters ---------- nshells : int Number of bins of new data. statistic : str Scipy keyword for scipy.stats.binned_statistic. Default: mean Returns ------- self : Profile object """ self.vel_prof_p, bins_p = stats.binned_statistic( self.pos_prof_p, self.vel_prof_p, statistic=statistic, bins=nshells, )[:2] self.vel_prof_n, bins_n = stats.binned_statistic( self.pos_prof_n, self.vel_prof_n, statistic=statistic, bins=nshells, )[:2] self.rho_prof_p = stats.binned_statistic( self.pos_prof_p, self.rho_prof_p, statistic=statistic, bins=nshells, )[0] self.rho_prof_n = stats.binned_statistic( self.pos_prof_n, self.rho_prof_n, statistic=statistic, bins=nshells, )[0] for spec in self.species: self.xnuc_prof_p[spec] = stats.binned_statistic( self.pos_prof_p, self.xnuc_prof_p[spec], statistic=statistic, bins=nshells, )[0] self.xnuc_prof_n[spec] = stats.binned_statistic( self.pos_prof_n, self.xnuc_prof_n[spec], statistic=statistic, bins=nshells, )[0] self.pos_prof_p = np.array( [(bins_p[i] + bins_p[i + 1]) / 2 for i in range(len(bins_p) - 1)] ) self.pos_prof_n = np.array( [(bins_n[i] + bins_n[i + 1]) / 2 for i in range(len(bins_n) - 1)] ) return self
[docs] def export( self, nshells, filename, direction="pos", statistic="mean", overwrite=False, ): """ Function to export a profile as csvy file. Either the positive or negative direction can be exported. By default does not overwrite existing files, saves to <filename>_<number>.csvy file instead. Parameters ---------- nshells : int Number of shells to be exported. filename : str Name of the exported file direction : str Specifies if either the positive or negative direction is to be exported. Available options: ['pos', 'neg']. Default: pos statistic : str Scipy keyword for scipy.stats.binned_statistic. If statistic=None, data is not rebinned. Default: "mean" overwrite: bool If true, will overwrite if a file of the same name exists. By default False. Returns ------- filename : str Name of the actual saved file """ # Find a free filename if filename.endswith(".csvy"): filename = filename.replace(".csvy", "") if os.path.exists("%s.csvy" % filename) and not overwrite: i = 0 while os.path.exists("%s_%s.csvy" % (filename, i)): i += 1 filename = "%s_%s.csvy" % (filename, i) else: filename = "%s.csvy" % filename with open(filename, "w") as f: # WRITE HEADER f.write( "".join( [ "---\n", "name: csvy_full\n", "model_density_time_0: {:g} day\n".format( self.time / (3600 * 24) ), # TODO astropy units "model_isotope_time_0: {:g} day\n".format( self.time / (3600 / 24) ), # TODO astropy units "description: Config file for TARDIS from Arepo snapshot.\n", "tardis_model_config_version: v1.0\n", "datatype:\n", " fields:\n", " - name: velocity\n", " unit: cm/s\n", " desc: velocities of shell outer bounderies.\n", " - name: density\n", " unit: g/cm^3\n", " desc: density of shell.\n", ] ) ) for spec in self.species: f.write( "".join( [ " - name: %s\n" % spec.capitalize(), " desc: fractional %s abundance.\n" % spec.capitalize(), ] ) ) f.write( "".join( [ "\n", "---\n", ] ) ) # WRITE DATA datastring = ["velocity,", "density,"] for spec in self.species[:-1]: datastring.append("%s," % spec.capitalize()) datastring.append("%s" % self.species[-1].capitalize()) f.write("".join(datastring)) # Rebin data to nshells if statistic is not None: self.rebin(nshells, statistic=statistic) if direction == "pos": exp = [ self.vel_prof_p, self.rho_prof_p, ] for spec in self.xnuc_prof_p: exp.append(self.xnuc_prof_p[spec]) elif direction == "neg": exp = [ self.vel_prof_n, self.rho_prof_n, ] for spec in self.xnuc_prof_n: exp.append(self.xnuc_prof_n[spec]) else: raise ValueError("Unrecognized option for keyword 'direction'") inds = np.linspace(0, len(exp[0]) - 1, num=nshells, dtype=int) for i in inds: f.write("\n") for ii in range(len(exp) - 1): f.write("%g," % exp[ii][i]) f.write("%g" % exp[-1][i]) return filename
[docs] def get_profiles(self): """Returns all profiles for manual post_processing etc.""" return ( self.pos_prof_p, self.pos_prof_n, self.vel_prof_p, self.vel_prof_n, self.rho_prof_p, self.rho_prof_n, self.xnuc_prof_p, self.xnuc_prof_n, )
[docs]class LineProfile(Profile): """ Class for profiles extrected along a line, i.e. the x-axis. Extends Profile. """
[docs] def create_profile( self, inner_radius=None, outer_radius=None, show_plot=True, save_plot=None, plot_dpi=600, ): """ Creates a profile along the x-axis Parameters ---------- inner_radius : float Inner radius where the profiles will be cut off. Default: None outer_radius : float Outer radius where the profiles will be cut off. Default: None show_plot : bool Specifies if a plot is to be shown after the creation of the profile. Default: True save_plot : str Location where the plot is being saved. Default: None plot_dpi : int Dpi of the saved plot. Default: 600 Returns ------- profile : LineProfile object """ midpoint = int(np.ceil(len(self.rho) / 2)) # Extract radialprofiles pos_p = np.sqrt( (self.pos[0, midpoint, midpoint:, midpoint]) ** 2 + (self.pos[1, midpoint, midpoint:, midpoint]) ** 2 + (self.pos[2, midpoint, midpoint:, midpoint]) ** 2 ) pos_n = np.sqrt( self.pos[0, midpoint, :midpoint, midpoint] ** 2 + self.pos[1, midpoint, :midpoint, midpoint] ** 2 + self.pos[2, midpoint, :midpoint, midpoint] ** 2 ) vel_p = np.sqrt( self.vel[0, midpoint, midpoint:, midpoint] ** 2 + self.vel[1, midpoint, midpoint:, midpoint] ** 2 + self.vel[2, midpoint, midpoint:, midpoint] ** 2 ) vel_n = np.sqrt( self.vel[0, midpoint, :midpoint, midpoint] ** 2 + self.vel[1, midpoint, :midpoint, midpoint] ** 2 + self.vel[2, midpoint, :midpoint, midpoint] ** 2 ) rho_p = self.rho[midpoint, midpoint:, midpoint] rho_n = self.rho[midpoint, :midpoint, midpoint] spec_p = {} spec_n = {} for spec in self.species: spec_p[spec] = self.xnuc[spec][midpoint, midpoint:, midpoint] spec_n[spec] = self.xnuc[spec][midpoint, :midpoint, midpoint] self.pos_prof_p = np.sort(pos_p) self.pos_prof_n = np.sort(pos_n) if outer_radius is None: maxradius_p = max(self.pos_prof_p) maxradius_n = max(self.pos_prof_n) else: maxradius_p = outer_radius maxradius_n = outer_radius if inner_radius is None: minradius_p = min(self.pos_prof_p) minradius_n = min(self.pos_prof_n) else: minradius_p = inner_radius minradius_n = inner_radius mask_p = np.logical_and( self.pos_prof_p >= minradius_p, self.pos_prof_p <= maxradius_p ) mask_n = np.logical_and( self.pos_prof_n >= minradius_n, self.pos_prof_n <= maxradius_n ) if not mask_p.any() or not mask_n.any(): raise ValueError("No points left between inner and outer radius.") self.rho_prof_p = np.array( [x for _, x in sorted(zip(pos_p, rho_p), key=lambda pair: pair[0])] )[mask_p] self.rho_prof_n = np.array( [x for _, x in sorted(zip(pos_n, rho_n), key=lambda pair: pair[0])] )[mask_n] self.vel_prof_p = np.array( [x for _, x in sorted(zip(pos_p, vel_p), key=lambda pair: pair[0])] )[mask_p] self.vel_prof_n = np.array( [x for _, x in sorted(zip(pos_n, vel_n), key=lambda pair: pair[0])] )[mask_n] for spec in self.species: self.xnuc_prof_p[spec] = np.array( [ x for _, x in sorted( zip(pos_p, spec_p[spec]), key=lambda pair: pair[0] ) ] )[mask_p] self.xnuc_prof_n[spec] = np.array( [ x for _, x in sorted( zip(pos_n, spec_n[spec]), key=lambda pair: pair[0] ) ] )[mask_n] self.pos_prof_p = self.pos_prof_p[mask_p] self.pos_prof_n = self.pos_prof_n[mask_n] if show_plot: self.plot_profile(save=save_plot, dpi=plot_dpi) return self
[docs]class ConeProfile(Profile): """ Class for profiles extracted inside a cone around the x-axis. Extends Profile. """
[docs] def create_profile( self, opening_angle=20.0, inner_radius=None, outer_radius=None, show_plot=True, save_plot=None, plot_dpi=600, ): """ Creates a profile along the x-axis without any averaging Parameters ---------- opening_angle : float Opening angle (in degrees) of the cone from which the data is extracted. Refers to the total opening angle, not the angle with respect to the x axis. Default: 20.0 inner_radius : float Inner radius where the profiles will be cut off. Default: None outer_radius : float Outer radius where the profiles will be cut off. Default: None show_plot : bool Specifies if a plot is to be shown after the creation of the profile. Default: True save_plot : str Location where the plot is being saved. Default: None plot_dpi : int Dpi of the saved plot. Default: 600 Returns ------- profile : LineProfile object """ # Convert Cartesian coordinates into cylindrical coordinates # P(x,y,z) -> P(x,r,theta) cyl = np.array( [ self.pos[0], np.sqrt(self.pos[1] ** 2 + self.pos[2] ** 2), np.arctan(self.pos[2] / self.pos[1]), ] ) # Get maximum allowed r of points to still be in cone dist = np.tan(opening_angle / 2) * np.abs(cyl[0]) # Create masks cmask_p = np.logical_and(cyl[0] > 0, cyl[1] <= dist) cmask_n = np.logical_and(cyl[0] < 0, cyl[1] <= dist) # Apply mask to data pos_p = np.sqrt( (self.pos[0][cmask_p]) ** 2 + (self.pos[1][cmask_p]) ** 2 + (self.pos[2][cmask_p]) ** 2 ) pos_n = np.sqrt( self.pos[0][cmask_n] ** 2 + self.pos[1][cmask_n] ** 2 + self.pos[2][cmask_n] ** 2 ) vel_p = np.sqrt( self.vel[0][cmask_p] ** 2 + self.vel[1][cmask_p] ** 2 + self.vel[2][cmask_p] ** 2 ) vel_n = np.sqrt( self.vel[0][cmask_n] ** 2 + self.vel[1][cmask_n] ** 2 + self.vel[2][cmask_n] ** 2 ) rho_p = self.rho[cmask_p] rho_n = self.rho[cmask_n] spec_p = {} spec_n = {} for spec in self.species: spec_p[spec] = self.xnuc[spec][cmask_p] spec_n[spec] = self.xnuc[spec][cmask_n] self.pos_prof_p = np.sort(pos_p) self.pos_prof_n = np.sort(pos_n) if outer_radius is None: maxradius_p = max(self.pos_prof_p) maxradius_n = max(self.pos_prof_n) else: maxradius_p = outer_radius maxradius_n = outer_radius if inner_radius is None: minradius_p = min(self.pos_prof_p) minradius_n = min(self.pos_prof_n) else: minradius_p = inner_radius minradius_n = inner_radius mask_p = np.logical_and( self.pos_prof_p >= minradius_p, self.pos_prof_p <= maxradius_p ) mask_n = np.logical_and( self.pos_prof_n >= minradius_n, self.pos_prof_n <= maxradius_n ) if not mask_p.any() or not mask_n.any(): raise ValueError("No points left between inner and outer radius.") self.rho_prof_p = np.array( [x for _, x in sorted(zip(pos_p, rho_p), key=lambda pair: pair[0])] )[mask_p] self.rho_prof_n = np.array( [x for _, x in sorted(zip(pos_n, rho_n), key=lambda pair: pair[0])] )[mask_n] self.vel_prof_p = np.array( [x for _, x in sorted(zip(pos_p, vel_p), key=lambda pair: pair[0])] )[mask_p] self.vel_prof_n = np.array( [x for _, x in sorted(zip(pos_n, vel_n), key=lambda pair: pair[0])] )[mask_n] for spec in self.species: self.xnuc_prof_p[spec] = np.array( [ x for _, x in sorted( zip(pos_p, spec_p[spec]), key=lambda pair: pair[0] ) ] )[mask_p] self.xnuc_prof_n[spec] = np.array( [ x for _, x in sorted( zip(pos_n, spec_n[spec]), key=lambda pair: pair[0] ) ] )[mask_n] self.pos_prof_p = self.pos_prof_p[mask_p] self.pos_prof_n = self.pos_prof_n[mask_n] if show_plot: self.plot_profile(save=save_plot, dpi=plot_dpi) return self
[docs]class FullProfile(Profile): """ Class for profiles extracted from the full snapshot, i.e. angle averaged profiles. Extends Profile. """
[docs] def create_profile( self, inner_radius=None, outer_radius=None, show_plot=True, save_plot=None, plot_dpi=600, ): """ Creates a profile from the full snapshot. Positive and negative direction are identical. Parameters ---------- inner_radius : float Inner radius where the profiles will be cut off. Default: None outer_radius : float Outer radius where the profiles will be cut off. Default: None show_plot : bool Specifies if a plot is to be shown after the creation of the profile. Default: True save_plot : str Location where the plot is being saved. Default: None plot_dpi : int Dpi of the saved plot. Default: 600 Returns ------- profile : LineProfile object """ pos_p = np.sqrt( (self.pos[0]) ** 2 + (self.pos[1]) ** 2 + (self.pos[2]) ** 2 ).flatten() pos_n = np.sqrt( self.pos[0] ** 2 + self.pos[1] ** 2 + self.pos[2] ** 2 ).flatten() vel_p = np.sqrt( self.vel[0] ** 2 + self.vel[1] ** 2 + self.vel[2] ** 2 ).flatten() vel_n = np.sqrt( self.vel[0] ** 2 + self.vel[1] ** 2 + self.vel[2] ** 2 ).flatten() rho_p = self.rho.flatten() rho_n = self.rho.flatten() spec_p = {} spec_n = {} for spec in self.species: spec_p[spec] = self.xnuc[spec].flatten() spec_n[spec] = self.xnuc[spec].flatten() self.pos_prof_p = np.sort(pos_p) self.pos_prof_n = np.sort(pos_n) if outer_radius is None: maxradius_p = max(self.pos_prof_p) maxradius_n = max(self.pos_prof_n) else: maxradius_p = outer_radius maxradius_n = outer_radius if inner_radius is None: minradius_p = min(self.pos_prof_p) minradius_n = min(self.pos_prof_n) else: minradius_p = inner_radius minradius_n = inner_radius mask_p = np.logical_and( self.pos_prof_p >= minradius_p, self.pos_prof_p <= maxradius_p ) mask_n = np.logical_and( self.pos_prof_n >= minradius_n, self.pos_prof_n <= maxradius_n ) if not mask_p.any() or not mask_n.any(): raise ValueError("No points left between inner and outer radius.") self.rho_prof_p = np.array( [x for _, x in sorted(zip(pos_p, rho_p), key=lambda pair: pair[0])] )[mask_p] self.rho_prof_n = np.array( [x for _, x in sorted(zip(pos_n, rho_n), key=lambda pair: pair[0])] )[mask_n] self.vel_prof_p = np.array( [x for _, x in sorted(zip(pos_p, vel_p), key=lambda pair: pair[0])] )[mask_p] self.vel_prof_n = np.array( [x for _, x in sorted(zip(pos_n, vel_n), key=lambda pair: pair[0])] )[mask_n] for spec in self.species: self.xnuc_prof_p[spec] = np.array( [ x for _, x in sorted( zip(pos_p, spec_p[spec]), key=lambda pair: pair[0] ) ] )[mask_p] self.xnuc_prof_n[spec] = np.array( [ x for _, x in sorted( zip(pos_n, spec_n[spec]), key=lambda pair: pair[0] ) ] )[mask_n] self.pos_prof_p = self.pos_prof_p[mask_p] self.pos_prof_n = self.pos_prof_n[mask_n] if show_plot: self.plot_profile(save=save_plot, dpi=plot_dpi) return self
if __name__ == "__main__": parser = argparse.ArgumentParser() parser.add_argument( "snapshot", help="Snapshot file for which to create velocity profile plot", ) parser.add_argument( "save", help="Filename of exported .csvy file", ) parser.add_argument( "-a", "--alpha", help="Euler angle alpha for rotation of desired direction to x-axis. Default: 0", type=float, default=0.0, ) parser.add_argument( "-b", "--beta", help="Euler angle beta for rotation of desired direction to x-axis. Default: 0", type=float, default=0.0, ) parser.add_argument( "-g", "--gamma", help="Euler angle gamma for rotation of desired direction to x-axis. Default: 0", type=float, default=0.0, ) parser.add_argument( "-o", "--opening_angle", help="Opening angle of the cone from which profile is extracted. Default 20.0", type=float, default=20.0, ) parser.add_argument( "-n", "--nshells", help="Number of shells to create. Default: 10", type=int, default=10, ) parser.add_argument( "-x", "--boxsize", help="Size of the box (in cm) from which data is extracted. Default: 1e12", type=float, default=1e12, ) parser.add_argument( "-e", "--elements", help="List of species to be included. Default: ni56", default="ni56", nargs="+", ) parser.add_argument( "--eosspecies", help="Species file including all the species used in the production of the composition file. Default: species55.txt", default="species55.txt", ) parser.add_argument( "--outer_radius", help="Outer radius to which to build profile.", type=float, ) parser.add_argument( "--inner_radius", help="Inner radius to which to build profile.", type=float, ) parser.add_argument( "--profile", help="How to build profile. Available options: [line, cone, full]. Default: cone", default="cone", choices=["line", "cone", "full"], ) parser.add_argument( "--resolution", help="Resolution of Cartesian grid extracted from snapshot. Default: 512", type=int, default=512, ) parser.add_argument( "--numthreads", help="Number of threads used in snapshot tree walk. Default: 4", type=int, default=4, ) parser.add_argument("--save_plot", help="File name of saved plot.") parser.add_argument( "--dpi", help="Dpi of saved plot. Default: 600", type=int, default=600 ) parser.add_argument( "--plot_rebinned", help="File name of plot after rebinning" ) args = parser.parse_args() snapshot = ArepoSnapshot( args.snapshot, args.elements, args.eosspecies, alpha=args.alpha, beta=args.beta, gamma=args.gamma, boxsize=args.boxsize, resolution=args.resolution, numthreads=args.numthreads, ) pos, vel, rho, xnuc, time = snapshot.get_grids() if args.profile == "line": profile = LineProfile(pos, vel, rho, xnuc, time) elif args.profile == "cone": profile = ConeProfile(pos, vel, rho, xnuc, time) elif args.profile == "full": profile = FullProfile(pos, vel, rho, xnuc, time) if args.profile == "cone": profile.create_profile( opening_angle=args.opening_angle, inner_radius=args.inner_radius, outer_radius=args.outer_radius, save_plot=args.save_plot, plot_dpi=args.dpi, ) else: profile.create_profile( inner_radius=args.inner_radius, outer_radius=args.outer_radius, save_plot=args.save_plot, plot_dpi=args.dpi, ) profile.export(args.nshells, args.save) if args.plot_rebinned: profile.plot_profile(save=args.plot_rebinned, dpi=args.dpi)